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Abstract

This white paper presents the Quanscient
MultiphysicsAI workflow for Piezoelectric
Micromachined Ultrasonic Transducer (PMUT)
design. The approach unites large-scale
multiphysics simulation with an AI surrogate
model to accelerate design space exploration
and reveal performance trade-offs.
A dataset of 10,000 large-scale Finite Element
Method (FEM) simulations was generated by
randomly sampling four geometric design
parameters. A forward AI surrogate was trained
to predict four key performance indicators
(KPIs); transmit sensitivity, center frequency,
fractional bandwidth (FBW), and electrical
impedance at resonance. The trained model
achieved approximately 1% mean prediction
error and sub-millisecond evaluation time,
enabling rapid exploration of the design space.
As an example, it allows the Pareto front for
this multi-objective problem to be calculated in
seconds.

Validated results demonstrate physically
realizable PMUT designs that simultaneously
increase fractional bandwidth and sensitivity
while maintaining a target centre frequency.
 
The workflow replaces manual, iterative design
loops with transparent, data-driven
exploration, empowering engineers to navigate
performance trade-offs efficiently and
confidently.

Keywords — AI; multiphysics;  FEM (Finite
Element Method); cloud simulation; design
exploration; ai surrogate model; inverse design;
pareto front 
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Trusted in both industry and academia

The cloud-based multiphysics simulation platform Quanscient Allsolve was used for all simulations
featured in the webinar.

Learn more at quanscient.com

Quanscient Allsolve 

A cloud-based FEM platform for fast and scalable multiphysics simulations

Developed by Quanscient, founded in 2021 in Tampere, Finland

Enables fully coupled multiphysics simulations across all core physics domains

https://eu1.hubs.ly/H0gXBym0
https://eu1.hubs.ly/H0gXBzs0


Introduction to MultiphysicsAI for
PMUT design

5

2025

quanscient.com

PMUTs are critical components in biomedical
imaging, and a variety of other sensing applications.
Two key performance metrics are their sensitivity
and bandwidth, which govern image quality, and
resolution.

Traditional design workflows rely on sequential
simulation–build–test cycles. These cycles are labor-
intensive and offer limited visibility into global design
space. Engineers typically iterate locally, exploring
only a few design variations at a time.

MultiphysicsAI addresses this challenge by
combining scalable multiphysics simulation with AI.
The framework transforms conventional forward
modeling, predicting how a given design behaves,
into inverse design, systematically identifying which
designs best satisfy performance goals.

Inverse design gap: Conventional solvers answer
the forward problem, “what does this design do?”,
rather than the inverse problem, “which designs
meet the target specification?” MultiphysicsAI
bridges this gap.

Trade‑offs: PMUT design involves balancing
sensitivity and bandwidth, which are inherently
conflicting objectives, as improving one degrades
the other.

Challenges in PMUT design

Scale and throughput: Large-scale multiphysics
simulations are computationally expensive, and
traditional parameter sweeps are infeasible at scale.

Frequency targeting: Design adjustments that
improve bandwidth often shift the center frequency.
Meeting strict targets (e.g., a specified centre
frequency) complicates manual optimization.

Verification and trust: AI-generated optima must be
validated through physical simulations to ensure that
they represent realizable designs rather than
numerical artifacts.

https://eu1.hubs.ly/H0gXBym0
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Fig. 1: PMUT example typical results
Engineers require methods to explore
thousands of design options efficiently.
High-throughput, multiphysics simulation
can be used to generate a rich dataset,
which can be used to train AI surrogate
models. These AI surrogates can in turn
be used to create near-instant
predictions of device performance for
new configurations.

Motivation for the simulation

Quanscient Allsolve enables running
thousands of parallelized multiphysics
simulations in the cloud. This makes
Allsolve an ideal platform for developing
AI models that provide instantaneous
predictions and enable interactive,
interpretable design optimization.

https://eu1.hubs.ly/H0gXBym0
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A circular PMUT was modeled using coupled
piezoelectric–structural–acoustic FEM physics, with
quarter-symmetry for efficiency. The problem was
solved in the time domain, and the output
waveforms were then transformed to the frequency
domain and used to generate transmit sensitivity
and electrical impedance responses.

Model description

Four geometry variables define the design space:
1.Elastic membrane thickness
2.Piezo layer thickness
3.Cavity radius
4.Bottom-electrode radius

Design parameters

Simulation dataset

10,000 randomized geometries generated and
simulated in Quanscient Allsolve
Runtime: ≈ 5 s per job, all parallelized
Outputs: transmit sensitivity, center frequency,
FBW, impedance

Fig. 2: PMUT example geometry

Fig. 3: Allsolve can generate large datasets for training AI models

https://eu1.hubs.ly/H0gXBym0
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A forward surrogate was trained (geometry → KPIs)
using the dataset.

Training time ≈ 10 min (GPU)
Mean prediction error ≈ 1 %
Inference time ≪ 1 ms

Plotting a correlation matrix confirms intuitive
dependencies, e.g., cavity radius strongly influences
bandwidth, electrode radius affects impedance.

Surrogate modelling

Fig. 4: Input-output cross correlation plot Fig. 5: Output-output cross correlation plot

https://eu1.hubs.ly/H0gXBym0
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The neural surrogate model maps problem-specific
parameters, elastic membrane thickness,
piezoelectric layer thickness, cavity radius, and
bottom-electrode radius, to key performance
indicators (KPIs): transmit sensitivity, center
frequency, fractional bandwidth (FBW), and
impedance. The model architecture is a deep
residual feedforward neural network with Swish
activations, featuring adjustable hidden dimensions
and a configurable number of residual blocks

We split the dataset into 80% training and 20%
validation subsets. All inputs and outputs are
normalized using statistics computed from the
training set. The network is trained using the Adam
optimizer with an initial learning rate of 1×10⁻³, which
is reduced by a factor of 4 every 1000 epochs. We
use mean absolute error (MAE) as the loss function,
as it offers a balanced compromise between
minimizing root-mean-square error and relative
percentage error. 

AI surrogate model training Throughout training, we monitor validation
performance and save the model checkpoint that
achieves the lowest validation loss.

To determine the optimal architecture, we perform
an initial neural architecture search that
progressively increases model complexity. The
search selects the simplest architecture that meets
predefined validation criteria during a short
preliminary training run. This chosen architecture is
then trained fully with the procedure described
above.

At inference time, inputs are normalized using the
training-set statistics, passed through the network,
and the predicted KPIs are denormalized using the
corresponding output statistics.

https://eu1.hubs.ly/H0gXBym0
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In multi-objective optimization, the Pareto front is
the set of all Pareto efficient solutions. In essence, it
represents the set of the best possible performing
designs, as in order to improve one objective we
necessarily need to degrade others. Searching for
these solutions is typically a lengthy process as it’s
highly iterative and often involves >100,000 FEM
simulations. However, in this work the AI surrogate
model was used to accelerate this process, allowing
the Pareto front to be calculated in a matter of
seconds. Once this Pareto front is calculated,
Allsolve can be used to quickly validate its
predictions. This provides engineers with confidence
that the designs identified are indeed realistic.

Optimization and validation One of the main benefits of using an AI surrogate is
that the Pareto front analysis can be quickly rerun
with different parameters. These can include:

Changes to the range over which input
parameters can be varied

For example, to consider process restrictions
Constraints on one or more of the output KPIs

For example to constrain the operating
frequency to a specified value

Final design selections can then be based on the
desired performance balance, along with merits
such as manufacturability, electronics matching.

Fig. 6: Plot of the design space showing the tradeoff between the two main KPIs, including training data, AI generated Pareto
front and validation simulations.

https://eu1.hubs.ly/H0gXBym0
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The Pareto front was calculated for the two main KPIs:
transmit sensitivity and fractional bandwidth. The 600
designs along the Pareto front were then simulated in
Quanscient Allsolve, confirming that they are indeed
valid designs. The scatter plot below shows the
10,000 simulations from the training set, along with
the AI predicted Pareto front and the validation
simulations.

Results show that despite the large size and random
distribution of the training data set, the Pareto front
has identified better designs at every point in the
space. Furthermore, the validations confirm that the
AI surrogate is accurately predicting performance at
the extremities of the design space.

Design-space insights

Fig. 7: Design space with Pareto front and validation simulations constrained to 12 MHz (left). Initial design vs final design
(right, blue initial, green final). 

Surrogate accuracy

Parity plots indicate ≈ 1 % mean deviation between
surrogate predictions and FEM outputs across all
KPIs. The model delivers near-instant evaluation,
enabling engineers to explore thousands of
alternatives interactively.

Frequency-constrained optimization

Most ultrasonic sensors are designed with a specific
centre frequency in mind. By applying a 12 MHz
constraint to the centre frequency KPI and a new
Pareto front can be generated which contains only
designs centred at this frequency. Furthermore, the AI
surrogate allows this to be calculated within seconds. 

Verified simulations show:
FBW increase: ~65 % → ~100 %
Sensitivity improvement: +2–3 dB re 1 Pa/V
Center frequency stability: 12 MHz ± 0.2 %

https://eu1.hubs.ly/H0gXBym0
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The Quanscient MultiphysicsAI workflow delivers
several tangible advantages for PMUT designers.

It provides dramatic speed gains. Multi-objective
optimization that previously required days of
manual simulation and tuning can now be
completed within seconds.

It offers full transparency. Instead of a single
black-box optimum, engineers can visualize the
entire performance envelope and directly inspect
trade-offs between sensitivity, bandwidth, and
frequency.

As new design concepts are explored they can
be directly compared, not just for a single
design, but across the entire Pareto front.

Fig. 8: Pareto fronts for multiple technology generations, showing relative strengths and weaknesses.

The approach ensures confidence and physical
fidelity, as all AI-predicted optima are verified
through complete Allsolve finite-element
simulations, confirming that the results
correspond to realizable devices.

The workflow demonstrates strong scalability.
The same framework can be extended to
alternative geometries, material systems, or
other multiphysics problems, establishing a
generalizable foundation for data-driven
engineering design.

https://eu1.hubs.ly/H0gXBym0
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Conclusion

Quanscient MultiphysicsAI workflow unites high-
throughput multiphysics simulation with accurate AI
surrogate modeling to accelerate inverse design. It
transforms PMUT development from a slow, local
search into a fast, global exploration, reducing days
of manual iteration to seconds of guided, data-
driven analysis.

By combining physics-based simulation and
machine learning, the workflow uncovers the
achievable frontier between sensitivity and
bandwidth, supports strict frequency targets, and
delivers validated design candidates with full
physical verification through Allsolve. Early results
demonstrate significant improvements in fractional
bandwidth and measurable gains in sensitivity, all
achieved with minimal engineering overhead.

MultiphysicsAI

Beyond this PMUT case study, the same
MultiphysicsAI framework generalizes to other
device geometries, material stacks, and design
objectives, providing a scalable path toward
broader adoption across complex multiphysics
engineering domains.

https://eu1.hubs.ly/H0gXBym0


14

2025

quanscient.com

MultiphysicsAI
Key takeaways

Get in touch

Co-CTO and Co-founder
andrew.tweedie@quanscient.com

Lead AI Developer
caglar.aytekin@quanscient.com

Dr. Andrew Tweedie

Dr. Caglar Aytekin

Unified workflow: Quanscient
MultiphysicsAI integrates high-
performance multiphysics simulation with
AI to accelerate inverse design.

Data-driven insight: Thousands of
simulations and a highly accurate
surrogate enable near-instant exploration
of design trade-offs.

Transparency and control: Engineers gain
clear visibility into feasible performance
boundaries and maintain full control over
design choices.

Validated accuracy: AI-generated results
are verified through Allsolve simulations,
ensuring confidence and physical fidelity.

Rapid iteration: Multi-objective
optimization and frequency-specific
design can be completed in seconds
instead of days.

Learn more and request a demo at
quanscient.com

Scalable framework: The same approach
extends to other devices, materials, and
physics domains, paving the way for
future quantum-enhanced workflows.
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