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QUANSCIENT
Quanscient unblocks it

Simulation bottlenecks What Quanscient enables

<1% of design space explored. >1000x throughput
—> Full design exploration

Lack of training data for Al/ML applications Al scale training material in hours

— Workflows with millions of simulation runs



Cloud data for MultiphysicsAl

Cloud solver - 2024

Foundation of our platform.

All capabilities are built from this. Adopted by some of the largest
R&D organizations globally.

MultiphysicsAl - 2026

In combination of the best data
generation from cloud solver
enables unparalleled capabilities.

First showcases built and
customers onboarded.

—  Strongly coupled multiphysics

QUANSCIENT

— Trains on the world’s best
simulation data

—> Understands context and guides
design exploration

— Controls solver usage and Al
training recipes

—> 1000x throughput for simulation exploration

—> Proven at large enterprises



QUANSCIENT
How MultiphysicsAl works

2. Train physics-aware neural networks

1. Create proprietary training data

Run up to millions of natively coupled simulations in Use that data to train a surrogate that can make
parallel with Quanscient Allsolve to produce unique hundreds of thousands performance predictions in
multiphysics datasets owned by you. seconds.

4. Verify before you choose 3. Decide with full design-space visibility

Validate the top options with Allsolve so every decision The fast model reveals the design landscape, surfaces
is grounded in physics. the few best trade-offs, and shows which options meet
your goals—instantly.



QUANSCIENT
Months of iteration time saved

. . . .. Slow and difficult to measure The inverse problem for optimal material parameters solved in

Piezo material characterization . . -
required materials milliseconds
PMUT sensitivity and bandwidth Months of iteration to reach a ‘good Identified the set of best designs and validated performance
optimization enough’ design improvements in hours
. C e .. Slow and costly simulations and |ldentified a better design and validated improved sound performance
Microspeaker optimization . :
prototyping In hours

Multiple design loops to tune hub

Electric Motor H timizati
ectric Motor Hub optimization geometry by hand

Real-time model for optimal hub shape

Lengthy iteration to balance

Piezocomposite design . .
P J sensitivity and bandwith

Real-time model that identified the best set of designs instantly



Vision Speed, scale and accuracy
Accelerate the most compound profits

challenging engineering
prOblemS — tOday and B Time saved in engineering
tO MOI'TOW. Less design spins

Faster time-to-market
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QUANSCIENT

Stacked benefits




QUANSCIENT

Al + Multiphysics:
Introducing the new paradigm for engineering
simulation

Dr Andrew Tweedie
Co-CTO & Co-Founder




Overview QUANSCIENT

e Why Al + Multiphysics?
e Allsolve: an engine for multiphysics data

e Training Al tools to solve complex engineering problems

e Al case studies



Why Al? QUANSCIENT

e As engineers our job is to solve complex inverse problems
o “Come up with a design that meets this spec!”

THE SPECIFICATION

e Current simulation tools don’t solve this problem
o They only tell you what a design will do, not what your best
designs might be
o Often we end up with a single “best” design, with few alternatives

e Al can quickly explore the whole design space
o Quickly identify the best design candidates
o Clearly visualise the tradeoffs between different options
o Verify the a design’s rubustness to manufacturing tolerances

Image courtesy of Gemini



Classic engineering design problem QUANSCIENT

Performance of an automotive engine

We'd like to
These are the best be here
Sest designs which can /
ff. S be achieved with D ¢
cticiency current technology
>
O
C
QD
O
LL]
Best power
Balanced /
design

Power output



Allsolve provides unparalleled throughput, for QUANSCIENT

multiphysics engineering simulations
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s50Nn's ratio
= sl 0
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0

Unparalleled speed Multiphysics solvers Cloud based

>100x Speedup General-purpose multiphysics Unlimited hardware

Thousands of parallel simulations Strongly coupled Intuitive browser based Ul



Allsolve: the multiphysics data engine

QUANSCIENT
o 10k Simulation dataset
~ - cw Trained Al model which can
g predict device performance
o Al can efficiently “learn” the problem

e |t can then be used to make predictions
very quickly (<< 1 ms per prediction)



Two approaches to Al training QUANSCIENT

Forward model Inverse model

X0 X0
Design w}:@q KPIs KPIs w}@_, Design
variables o o variables

(sometimes called a “digital twin”)



Case studies
MEMS & ultrasound

PMUT design optimisation

&L*E;LEEooiimv

Piezocomposite design optimisation

QUANSCIENT

MEMS microspeaker design optimisation

QUANSCIENT
ALLSOLVE

Piezo material characterization

Impedance magnitude (Q)
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QUANSCIENT

PMUT design optimisation
Case study



PMUT example QUANSCIENT

Geometry & physics
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Sensitivity (Pa/V)

Typical results QUANSCIENT
PMUT example

PMUT Unit Cell Tx Sensitivity PMUT Unit Cell Impedance Magnitude
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QUANSCIENT
Problem definition

e Design inputs to vary:

o Elastic layer thickness

o Piezo layer thickness

o Cavity radius

o Bottom electrode radius

Our goal is to find designs which maximise:
o Sensitivity
o Bandwidth

e Outputs to study (KPIs):

o Transmit sensitivity (Pa/V)
o Centre frequency (Hz)

o Fractional bandwidth (%)
o Impedance at resonance (Ohms)



PMUT example
Simulated training dataset

e Created a dataset of 10k simulations with
randomised geometry
o Each simulation executes in ~5 seconds
o Calculates all 4 KPIs

e This raw data can provide some insights
o Which inputs and outputs are linked?
o Which outputs must be traded off
against each other?

e Plotting a correlation matrix can help visualise
these relationships
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Output-Output Cross Plots
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2000 3000 4000 5000 6000 7000
Tx max

Distribution of fc

10 12 14 16 18 2.0
fc le?

fc vs Zfc

2.5

1e6 Zfc vs Tx max

FBW vs Tx max

200 4

2000 3000 4000 5000 G000 7000
Tx max

166 Zfe vs fe

2000 3000 4000 5000 6000 7000
Tx max

FBW vs fc

FBW

200 1

175

150

125

100 4

fc te7
Distribution of Zfc

1.0 12 1.4 16 le 2.0
fc le?

FBW vs Zfc

0.5 10 15 20 25
Zfc le6

166 Zfc vs FBW

FBW

200 4

175

150

125

100

75 4

25

T
0.5 10 15 2.0 2.5
Zfe le6

Distribution of FBW

SE) 1(‘)0 ].%D 2 (I)O

Count

150 200




QUANSCIENT
Al training

e Train an Al model on this data to
o Take dimensions as an input

o Predict output KPIs
o I.e. what we would call the “forward model”

, o0
 Takes around 5-10 minutes on a GPU Design w}:@_) KPls
o0

variables

e Resulting Al algorithm is accurate to 1% and
executes in <<1 ms

e SO0 what can we do with this algorithm.....?



QUANSCIENT
Design exploration

e Goal is to maximise both sensitivity and bandwidth
o These are typically mutually exclusive

F‘-:' ' The best solution
. . . e ¥ of objective 2
e \We can use Pareto front analysis to do this, using = o ke
the Al algorithm as the forward model 2 e —.
. - » Pareto Front
 This can be calculated in seconds - LN
- '
- "
&
@

The best solution

* ¥ of objective |
|

Objective |



PMUT example QUANSCIENT
Pareto front

PMUT: Fractional bandwidth vs Tx sensitivity

8000
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e Pareto front
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PMUT example QUANSCIENT
Pareto front

£000 PMUT: Fractional bandwidth vs Tx sensitivity

Training data
e Pareto front

7000 -

6000 -
5000 - Question:

4000 - Are the red dots real designs?

Tx sensitivity (Pa/V)
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| | |
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PMUT example QUANSCIENT
Pareto front with validation sims

PMUT: Fractional bandwidth vs Tx sensitivity
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PMUT example QUANSCIENT
Pareto front raw data

Tx Max vs Frequency for Each Simulation

8000

JO00

6000

5000 Since we did not constrain
3 4000 frequency the front contains
~ designs with a range of

3000 centre frequencies

0.0 0.5 1.0 1.5 2.0 2.5
Frequency (Hz) le7



Tx sensitivity (Pa/V)

PMUT example QUANSCIENT
Pareto front with 12 MHz centre frequency constraint

PMUT: Fractional bandwidth vs Tx sensitivity Tx Max vs Frequency for Each Simulation
|
Training Data
« Pareto Front
7000 « Validation sims
5000
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4000
5000 -
3000
4000
2000
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1000
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7000

PMUT example
Original design vs Pareto optimal design

PMUT: Fractional bandwidth vs Tx sensitivity
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QUANSCIENT

Pareto optimal design for 100% fractional bandwidth
sweep 0 = original design, sweep 1 = optimal 12 MHz design with 100% FBW
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QUANSCIENT

MEMS microspeaker design optimisation
Case study
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ARTICLE Open Electrotstatic

Coulomb-actuated microbeams revisited: Microspeaker
experimental and numerical modal decomposition
of the saddle-node bifurcation

T 1 - i | 1 .
Antgn Meln|l<10v : Hermanr} A.1 G. Schenk’, Jorge M. Monsalve', Franziska Wall', Michael Stolz'?, Andreas Mrosk’, Electrostatically actuated silicon-based
Sergiu Langa’ and Bert Kaiser

microspeakers

Abstract
Electrostatic micromechanical actuators have numerous applications in science and technology. In many applications,
they are operated in a narrow frequency range close to resonance and at a drive voltage of low variation. Recently,
new applications, such as microelectromechanical systems (MEMS) microspeakers (uSpeakers), have emerged that
require operation over a wide frequency and dynamic range. Simulating the dynamic performance under such
circumstances is still highly cumbersome. State-of-the-art finite element analysis struggles with pull-in instability and
does not deliver the necessary information about unstable equilibrium states accordingly. Convincing lumped-
parameter models amenable to direct physical interpretation are missing. This inhibits the indispensable in-depth
analysis of the dynamic stability of such systems. In this paper, we take a major step towards mending the situation. By
combining the finite element method (FEM) with an arc-length solver, we obtain the full bifurcation diagram for
electrostatic actuators based on prismatic Euler-Bernoulli beams. A subsequent modal analysis then shows that within
very narrow error margins, it is exclusively the lowest Euler-Bernoulli eigenmode that dominates the beam physics
over the entire relevant drive voltage range. An experiment directly recording the deflection profile of a MEMS
microbeam is performed and confirms the numerical findings with astonishing precision. This enables modeling the
system using a single spatial degree of freedom.

Melnikov, A., Schenk, H.A.G., Monsalve, J.M. et al. Coulomb-actuated microbeams revisited:
experimental and numerical modal decomposition of the saddle-node bifurcation. Microsyst
Nanoeng 7, 41 (2021). https://doi.org/10.1038/s41378-021-00265-y



MEMS Microspeaker QUANSCIENT
Frequency Domain Simulation

Electrostatics + Solid mechanics + Fluid dynamics

192k 4 2 100 | ) | o
[1] Kaiser, B. et al. Concept and proof for an all-silicon MEMS micro speaker utilizing air

DoFs Cores Minutes Hz chambers. Microsyst Nanoeng 5, 43 (2019). https://doi.org/10.1038/s41378-019-0095-9.



https://doi.org/10.1038/s41378-019-0095-9

Multiharmonic simulation: Navier-Stokes + Linear Elasticity (FSI)
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Microspeaker Al Surrogate Model QUANSCIENT
Optimal design discovery

e Dataset: 12.5k nonlinear simulations (harmonic balance, ~ 14 Core Hours, ~19 min runtime)
o Frequency sweeps over 20Hz-20kHz
o At a constant driving voltage amplitude of 25 V
o Parametric sweeps in width (W), thickness (T), and initial gap (g0)

o0

O

e Design Goal (at a chosen spatial location) at frequency of 1 kHz
o Maximize sound pressure level (SPL) in dB
o Minimize total harmonic distortion (%) in pressure field

e Train an Al surrogate model W

e Pareto front analysis for optimal design discovery
o Use trained surrogate model - runs fast and cheap
o Find optimum points according to design goal
o Validate with Allsolve by running interesting designs on the pareto front

-> Get the best performance out of your design while meeting required specifications



Microspeaker Al Surrogate Model
Pareto front analysis for design discovery

e Best design from parametric data
o W=60um, T=17Tum, g0 =10 um
o THD = 0.13 %
o SPL =-42.5dB

e Best design (by performance) after
pareto front analysis validated by
Allsolve

o W=42um, T=0.76 um, g0 =13 um
o THD = 0.12%
o SPL =-29.73 dB

-> Approx. 30% improvement in SPL
keeping THD under control

SPL (dB)

_20 -

_30 -

QUANSCIENT

Microspeaker: THD p vs SPL at freq 1 kHz and V=25V

oo

«Best design (based on set criteria)
W=42um, T =0.76 um, g0 =13 um
@ THD = 0.12%, SPL = -29.73 dB

«Initial design
W =60um, T=1Tum, g0 =10 um
THD = 0.13%, SPL = -42.5 dB

Training data
Pareto front surrogate prediction
Pareto front designs in Allsolve

0.1 0.2 0.3 0.4 0.5
THD p (%)



Microspeaker Al Surrogate Model
Monte Carlo analysis

SPL (dB)

Monte Carlo Analysis (£ 30, 10% of mean) around best design point
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SPL (dB)

Microspeaker Al Surrogate Model QUANSCIENT

Monte Carlo analysis

Yield Analysis: 72.39% (SPL: 5%, THD p: £30%)
THD_p: [0.0726%, 0.1349%], SPL: [-29.27, -26.48] dB Yield Map: Combined Effect of SPL and THD_p Tolerances
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QUANSCIENT

Piezoelectric material characterisation
Case study



QUANSCIENT
An industry wide problem

e Piezoelectric material properties are challenging to measure
o Multiple unknown parameters (minimum 12)
o Typically involves building and measuring multiple test samples
o This requires expensive equipment, software and expertise

e In practise engineers rely on data from the literature or manufacturers
o Often inaccurate or outdated
o Results in poor simulation accuracy

 We have developed an Al based characterization technique based on Allsolve simulation data



Piezo material characterization QUANSCIENT
Sample measurements

Impedance analyser

: [ o AETLILE] : J vJ ,7‘ t‘ - — ! L ;
i 4 T H L |
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:
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QUANSCIENT
Training data & Al training

o A dataset of 10k PZT disc simulations was generated in Allsolve
o Random disc dimensions
o Random material properties
o Outputs were electrical impedance magnitude and phase

e An inverse Al model was then trained
o |nputs
» Measured electrical impedance spectrum
= Sample geometry and weight
o Qutputs
= 8 material properties |

@ o0 Stiffness matrix
/h’ q}g}‘@q Piezo matrix
; o0 Permittivity matrix



Piezo material characterization
Initial testing

Al model input parameters

Electrical Impedance vs Frequency
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Disc geometry and density:
Thickness (mm) Diameter (mm) Density (kg/m*3)
2.2936 16.089 7927.2754

Note: Thickness, diameter and density are included as inputs to the Al model, based on simple lab

measurements.

The piezo properties are predicted purely on these measurements, plus the impedance data.

Run Al model

Run Al Model

Calculating properties...

Calculation completed in 8.97 milliseconds.

Comparison of predicted vs actual properties:

Variable
cll

cl2

cl3

c33

e3l

€33
eps33

qdamp

Predicted

1.1809e+11

7.9434e+10

7.6400e+10

1.1100e+11

-6.9311e+00

2.5521e+01

1.5731e+03

9.9305e+01

Actual

1.1807e+11

7.9437e+10

71.6376e+10

1.1102e+11

-6.9351e+00

2.5517e+01

1.572%e+03

9.9117e+01

QUANSCIENT

<0.25% error on
simulated data

, wmEmEmE---
Error (%)
0.017
0.003
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0.015
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Piezo material characterization QUANSCIENT
Beta testing

Piezo property characterization Piezo property characterization 4 Previous step

CSV input dataset
Elasticity matrix (Pa)
Upload CSV file

pzt_disc.csv

CSYV file processed successfully.

‘:‘}, _T:‘:-:
1.0589762¢
Disc parameters

+
6.09655111 1.0589762:=
Diameter (mm)

21.01 + s
6.4549117¢ 6.4549117¢ 1.01012070

Thickness (mm)

0 0 0 2.29e10
2.35
0 0 0 0 22910
Weight (g)
5.67 +
: 0 0 0 0 0 2.2466056°

Switch to expression editor

Generate material properties Cancel v
Add as new material Cancel



QUANSCIENT

Final thoughts



Exploring new design concepts QUANSCIENT

Our job is to help engineers discover new lines
——— Original technology

——— |mproved V2

Experimental high efficiency

Efficiency

Power output



Exploring new design concepts QUANSCIENT

Our job is to help engineers discover new lines

0 ——— Original technology
' ——— |mproved V2
. Experimental high efficiency

Ya ==-- Tomorrow??

Efficiency

Power output



Allsolve Al QUANSCIENT
Key takeaways

e Allsolve has evolved into an engine for multiphysics data
 We have demonstrated that this data provides a robust platform for Al training

e The resulting Al algorithms can be used to solve challenging inverse problems such as design
space exploration and material characterisation

andrew.tweedie@quanscient.com
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